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Equilibrium statistical mechanics of a grain boundary
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In this article we introduce, develop, and discuss the theoretical calculations required for the exact solution
of a recently reported phase transition, the geodesic to zigzag transition. In this scenario the interfacial tran-
sition emerges from geometric competition between a geodesic, shortest path, configuration and a zigzag
configuration which is able to reduce its energy by binding to a centrally positioned defect line. From a
technical point of view the transition is unusual as it is described by a change from saddle dominated behavior
to pole dominated behavior of the integral representing the partition function ratio. We also establish the
precise fluctuation behavior of the interface by computing the spin magnetization at any point in the system.

DOI: 10.1103/PhysRevE.71.036106 PACS nuni)er64.60—i, 68.08.Bc, 68.35.Rh

I. INTRODUCTION ing the line of defect bonds, but will lose entropy as a result
. o . . . of the one-sided pinning against an attractive hard boundary.
facce:gr:ﬁl?gvrva?jli?nlenrfsl?ohr:slnr:gst%i;ettgge%egavﬁr dgresa;;:girr-llf however, the “trap” is positioned centrally, in the thermo-
the delocalization transitions of intgrfaces vgithin the two- namic limit, then the interface will be captured for al

temperaturefl0]. The differentiation between one-sided and

?il:rgle ﬁé%ﬂ?nlii'glg Toobdleeg-rt?\l:t nr]r?;elt;z ?sz\)/\ll\ilal dkg?(\évgt|3t%5'ifr'ltwo—sided pinning was highlighted by Fisher in a mesoscopic
P y y random walk model which indicates the generality of the

well established techniques of mathematical phyles. scenario by careful analysis of the first return probabilities to

Interfacial results may be derived by considering, in mag'lines[ll]. Other work has considered the effect of boundary

netllc. language, thg behavior of.domam vyalls bet.ween th onditions that force the interface to cross the strip at a pre-
positive and negative phases. With the lattice gas mterpretaa—

tion we can then interpret these domain walls as interfacer%etermlnecj ang|g12,13 without the bond weakening. The

. . ' Fsults here are nontrivial because the surface tension asso-
separating a gas phase from a fluid phase, or, in terms g

. ; L . ciated with each unit length of interface crossing the lattice is
mixtures, with coexisting phases geometrically controlled bymanifestly angle dependefit2]. By introducing the bond

e T e eeame . oWeakening once more, next o he wal i = posile 1 use
P e exact solution to define the contact angle in two dimen-

|nter<_est[4—7]. As f[he SOIUt'OnS.' are exact, they incorporalle . sions in a way that is not invalidated by capillary fluctuations
possible fluctuations of the interface. The use of the Ismgbf the interface 13,14

model analogy has made it possible to categorize approxima- Here we consider the natural remaining case in this sce-

gfgn(?%hergfessiL:a?ic?r{:tsvm?ctLC ::‘:y’bgeg;‘gt'?hge gsrggteer g?‘:ﬁrﬁario, namely, the behavior of an interface crossing the strip
Ising so%ution[S] y P %t an angle when a centrally positioned defect line, running

We may induce controlled interfacial configurations in aparallel to the strip axis, is present. This introduces a com-

) T . etitive mechanism between the anglgéodesicinterface
ferromagnetic model by flipping sequences of spins on thégonfigura’tion and one that takesz#gzag path across the
boundaries, thus forming differing regions of positive phase

: X stem in order to profit from the line of weakened bonds.
negative phase, and the necessary domain walls. Energe

“traps” for the interface may also be introduced by weaken- e have thus called this transition the geodesic to zigzag, or

ing the bond strength of a particular line of bonds on theGZZ’ transition. In this article we present the analytic details

lattice. If this line runs perpendicular to the transfer direc—Of this calculation including the computation of the magne-
. ) perpena : . tization profiles. Elsewhere we have presented a summary of
tion, then an exact solution is still possible. A strip geometry,

periodic horizontally, but with hard boundaries top and bot-1cSE r€SultL5], an approximation methdds], and a more

tom, may be solved by transferring perpendicular to thedetalled study of the relaxation dynam|d¥] of the system.

walls. In such a geometry the possible interfacial behaviors
are well undgrstood. ' . Il. THE SYSTEM

If we position the line of weakened bonds adjacent to the
wall then the well established delocalization or wetting tran- The system studied is depicted in Fig 1. We construct a
sition occurs at a well defined temperatig<T, [9]. The  ferromagnetic Ising system with identical hard wall bound-
transition mechanism here is produced by the basic energyry conditions(h=+1) on the top and bottom but which is
entropy paradigm: the interface will gain energy by follow- periodic along the horizontal axis. The lattice is anisotropic
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FIG. 1. A simple schematic diagram of the Ising system. We L:VNV;’Zvaé/ZVN 3
have shown the various bond couplings associated with the lattice.
The boundary conditions are fixed to be plus on both the top and thand
bottom and thus the spin flips between the annotated spins induce a M
section of negative spins. Two possible configurations are shown. _ _ _ *
The one on the right would be a possible bound configuration along Vi = V1(bKy) = exp ; (bKy)"of 4)

the center line whereas on the left is a diagonal, geodesic,

configuration. for 0<b<1 and the limiting process used in H) will be
described as we proceed. The reIationsR(;i),j)|+>:—(fi’r
+fi)(fJ-T+fJ—)|+> which is valid whenR(i, j) operates om+) is

with a bond coupling oK,(K,) between spins in a vertical useful in evaluating Eq(2) if we bring in the identity

(horizonta) direction. We choose the vertical distance to be

2N+1 and the system width to bid. We weaken the bonds |+)= %(|¢2> +|%) (5)

in the (N+1)th tier by a factorb; this represents the grain v

boundary. The boundary conditions are introduced by flip- hereld? the simult imal ei tor¥of
ping a finite numbek of spins in both the top and the bottom where|®;) are the simultaneous maximal eigenvectory/p

tiers. We introduce the angle by offsetting the flips by (note the strict degeneracjeand of the parity operator

spins. These boundary conditions, when we take appropriate M
limits, induce two—essentially identical—interfaces to form Pu=1I1(- of) (6)
across the strip. We will demonstrate that the two most likely j=1
configurations are an interface crossing the strip at a meawith
angle¢ or one which is partially pinned to the weakened tier on _ 0
of bonds in the center of the strigee Fig. 1 Py|®:) = £[®5). (7)

It is necessary to form two interfaces in the strip so thatrhys the matrix element in the numerator is the sum of the

we may impose the periodic boundary conditions; for sim-,,q terms<<D2|R(1,k)LR(n,n+k)|<I>2>. Since we are inter-

plicity, the reader may prefer to visualize a single interface Nasted in the limitM — o, in which the + and — terms are

a system withantiperiodicboundary conditions. Such a sys- 5y mnratically identical, we will just display one term in the
tem is of course easier to simulate on a computer and is thuasnalysis that follows

precisely what we have presented elsewhere, but this system Expanding the local Fermi operatofsand their adjoints

is not feasible to treat analytically with the methods pre-; i _ ; .
sented below. The disadvantage of introducing two interfaceg] terms of theGy(w), Go(~w) basis, defined by

into the system is that alternative, unwanted configurations Vy(+)Gl()| ) = e22G] ()| DY) (8)
may form. It is a feature of our exact treatment that we may _ . _ _
precisely identify and thus eliminate such configurations. Wendependent ot, providedeMe=-1, which also geflnes the
can thus form simple closed expressions for the relevant inGo(w) which are related to the local fermioffig, f;, by

terfacial terms. o
( Gi(w) ) ~ ( cosfy(w) —isin 0o(w)>( Fl(w) )
Go(-w)) \-isinfyw) cosby(w) /\F(-w)

[ll. ISING COMPUTATION I: THE PHASE BOUNDARY (9)

The system described above can be solved exactly byith 6y(w)=(7+w)/2 mod, and
constructing a transfer problem and transferring perpendicu-
lar to the hard boundaries. Denoting a line of spin flips be- 1 N
tween spins ai andj asR(i,j) and the transfer matrices FT(w):ﬁE e”“’f;r- (10)
associated with the vertical and horizontal bonds/a¥,) VM=
andV,(Ky,), respectively, we can write the partition function  The transformation if9), of the Bogolubov-Valatin type
associated with a single interfac&N,M;b, ¢), in terms of  [18], requires theGy(w) to be Fermi operators, as are the
matrix elements as F(w) themselves. Simple algebra gives

M
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4

1
(DY R(1,k)LR(n,n + k)| @) = WE exp- i wy)exl - iwy(1 +K) Jexd - iws(1 +n)Jexg— iwy(1 +n+ k) Jexpi > (w;))
(w)4 1
X (DY[GY(wy) + Go(~ 0 [[Gi{p) + Go= ) IL[G{(@3) + Gol= w) [[Gl(@) + Go(~ @] DY
(11)
[

The matrix element in Eg11) can be evaluated by the (a[z(- wl),C’?j(wj)]+|b>
following technique. LetX'(w) be defined by the left [Z(= ©1),Oj(w))]s = (alb) . (20
vacuum relation

(@OLX () = 0 (12) Using the vacuum relationshifd.7) leaves
and thus (8 Z(- 01),0i(w))|b)
Xt Gl in the numerator; eliminating(-w;) using Eq.(18) and the
( () ) - —1( o(@) )L (13) vacuum relation(16) gives
Y(_ w) Go(_ (1))

_ (2| O1(w) Oj(w))|b)
where it is useful to introduce the auxiliai(w) operators. [Z(= 01),0j(w) ]+ = alb) (21
The matrix element in Eq.11) is then

(DIYLIX (w9) + Y(= wp) [ XN (@) + Y(= wy)]

which is a very useful form for calculating, once the neces-
sary conditions above have been established. As an example

X[Gilws) + Gol~ w3) [Gi(ws) + Gol = wg) 1| PY). consider
(14 Mp=(@ILIX (@) + Y(- 0)[Gi(ws) + Go(~ wg)]| DY)
An element of this form can be computed by a straightfor- =(POLY(- 01)Gl(w3)|P%) = C(w,)
ward extension of standard methods, generalizing Wick’s ol ~t + 0 0 0
theorem to the case of asymmetric in and out states, which is X(@,|LGo(w1) Gl wg)| D) + D(wl)éwlvwa<q)+“‘|¢+>
useful in the present context. Consider the matrix element (22
defined by .
where the left and right vacuum operators are related by the
M((0)2m) =(@lO1(w1) - Om(wom)[b) (15 unitary matrix transformation
where the in and out statéa| and|b) have vacuum proper- (Xf(w) ) ~ (A(w) B(w) )( Gi(w) ) 23
ties Y(-w)/ \Clw) D(w)/\Gy(-w)/’
(@X"(w)=0 (160 where the elements are to be computed in a manner demon-
and strated below. But, Eq16) also implies
Z(- w)|b) =0, 17) 0 =(DYLX"(w) Gh(w3)| DY)
_ o =t + 0

together with the decomposition = Al@1)(PL|LGo(@1)Go(w3)| D7)

0j(w) = gj(@)X'(0) + B(@)Z(- w). (19) + B(01) 8, 0 { PIL D). (24

Note that this may not be possible in all circumstances. S0, providedA(w,) #0,
Us_lng the def|_n|t|on (1_5) then by expandmg Ol(wl)_ <<I>2|LG$(w1)Gg(w3)|CDS) _ Blw)
using (18) and introducing the anticommutation relations 5 o =- 5%_&,3 (25)
[Z(-w1),Oj(wj) ]+, which arec numbers in this application, (D|L|D%) Alwy)
and the vacuum relations give and, finally,
M((0)2m) B(wy)C(wy) Olf 4.0
o M= Dlwy) == 07 By -ar{ PlLIPL)  (26)
’B(wl)%( DZ(= 1), 0j(@) LM (A14()zm) which, by the unimodularity of E(23), simplifies to
(19) 1

M13: 5(1) - (27)
_ _ . Alwy) 73
where(w)yn=(wy, ..., way) andAj(w),=(w),; if j €1 for any
index of the set. Finally, we bring the anticommutator to a and the other contractions needed in this calculation follow

convenient form. Since it is @ number, it follows that in an analogous way.

036106-3



ABRAHAM, MUSTONEN, AND WOOD PHYSICAL REVIEW E71, 036106(2009

We now consider the calculation of the transformation
matrix (23) in this particular example. It is useful to note the
group property of the Bogoliubov-Valatin transformation
(BVT) matrices. If

cosf -—isiné
U(e)_<—i siné cosé ) (28)
thenU(6;+6,)=U(6)U(6,) and thus we have
GT((U) eNY(w)
\FN(G()?_ a)) )VN:U(eO_ 0)< 0 e—N'y(m))U(e_ 01)
Gi(w) )
29
) (Gl<— o) (29

where theG; are the “diagonal” operators for the grain-
boundary modified matrix® = V32 V32, with angle6,(w)

in the BVT. This arrangement makes it easy to see that FIG. 2. Onsager’s hyperbolic triangle. See text for details.
Gl(w) gNr(@) . o . ) . . )
! L=U(6- 0) u(a- 6y identifiable alternative configurations in the double system;
Go(— w) 0 e two bubbles on the respective walls, two interfades. 1),

on@ g gnd cross-conngcte_d interfaces which are less easily yisual-
x( ) )U(gl_ 0) ized. Our selection is merely an expression that we wish to
0 em make k> n implicitly forming a double copy of two other-
(@) 0 Gg(w) wise uncouple_d antiperiodic systems. It is important that we
( —N«/(w))Uw_ 6o) ~ . take these limitsM — o thenk— =, in sequence so that the
0 e Go(~ ) configurations are identifiable. This thus defines and justifies
(30) the limiting process introduced in EQ).
The final expression is the product of two identical inte-

Thus we have a mild exercise witf+22 matrices or Pauli o0 \yhere the element associated with a single interface is

spin algebra according to taste. It is apparent that fiNite
effects are obtained exactly, but, for the purposes of the 1 (™
present application, we will work to the leading asymptotic Z(N,;b, ) = —f

order. Thus Eq(30) becomes 2m)

einw
dw (33
An(w)
L1 Gi(w) L 2Nz Gi(w) 31 where the term in the denominator emerges from the se-
Go(- @) - () Gyl o) (31) quence of transformations above Eg0). With the notation
developed in Eq(23) we find

with
. Ny(w) o~ 2K * Yw) _ o) _
Z,.(w) =[coshy, +sinhy; cod5* - 6,)] A(w) = e 2_(1 * cosﬁ_ (e — (e A+)
o 4 sinh DK, sinh XK sinh y(w)
1/1+coss* (w) —isind* (w)
x> (32 (34)
2\ isind* (w) 1-co* (w)
where we have introduced the Onsager hyperbolic triangldl the limit described by Eq32). For finiteN, we may write
shown in Fig. 2[1]. n(w) as a sum of three exponentially different terms,
The transfer matrin/® has angles;(w) in place of 5*.
— Ny(w —2Ny(w
The value of this is that we can use the hyperbolic generali- AN(©) = p(@)& - g(w) + r(w)e™, - (35)

zations of the al-Kashi triangle formulas as a common ve- Noy(w) — . .
hicle for algebraic simplification in a systematic way. where p(w)e?"'=A.(w). The analysis of E¢(35) and its

We are now almost in a position to state the results for th&onsequences for the finite size effects of the phase boundary

problem considered. The problem stated is a four-point funcQf the GZZ transition will appear elsewhel®9]; here, how-
tion, in the language dfL9), that may be reduced to a double €V€l: We consider E34). _ .
sum by use of the generalized Wick's theorem noted above. 1N (eMsA. are roots of a quadratic term and are given
We may extract the relevant terms by first discarding anj)

n-independent terms, typically corresponding to droplet -
states that do not cross the strip, and then discarding any AW \/wz— 2w cosh X; ‘1 36
k-dependent terms which correspond to cross-connected - - cosh X,

bubbles, not the single configurations that interest us. In ef-

fect this calculation immediately distinguishes between threavhere
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w = cosh K,(cosh X - sinh XK} cosh DK;), (37) Im(w)

which is analogous to a similar result for wetting at a wall
[22]. The Onsager function(w) [1] is defined by

coshy(w) = cosh X cosh X, - sinh X, sinh X} cosw,
(38) ¢

the necessary features of which are discussed below. 2
The integral(33) can be evaluated by contour techniques,

and so we must choose an appropriate path withindhe 3

plane. The Onsager functioy(w) is 27 periodic and has 1 2 3 4

branch cuts in both the lower and upper half planes which

e)ftend from 2Ky -Ky) to 2(Ky+Ky) and. the negative of tures in the complex plane as temperature varies. The only part of
this respectively. It has been long established that these cuige plane that is plotted is the imaginary axis and the inverse tem-
provide information regarding the bulk properties of the peratures is shown on the horizontal axis. The lower branch point
model[20,21]. The factore™ in Eq. (33) ensures not only  (bulk behavioy is shown in black and thus its intercept with the
the convergence of the integral, but in the limitarge that  horizontal axis defines the bulk critical temperature. Below the fea-
we can associate the leading order behavior of an elemenire are plotted the saddle point pattark gray(blug)] and the pole
with the feature in the complew plane that lies closest to [light gray (red] whose behavior is described in the text. The sys-
the real line. These features invariably lie on the imaginarytem shown is an isotropic system with=75', b=0.6.

axis to ensure the nonoscillatory behavior of any correlation

lengths. o . has not to our knowledge been previously reported.
Examination of Eq(33) reveals that for this problem we e can demonstrate the calculation very simply in the

have three competing terms. The lower branch point from th%pecial casep=/4 on the isotropic latticgK,;=K,=K).
Onsager function(contributing bulk terms any zeros of \we find

An(w) (contributing pinned termsand a saddle point com-

FIG. 3. (Color onling A plot showing the variation of the fea-

ing f_rom th_e exponentiated terl(rmontributi_ng terms repre- coshwy = }( - +sinh ZK)

senting an interface at a constant anglkhis last term has 2\ sinh K

been used in previous calculations to determine the angular R

dependent surface tension in the Ising latid¢8]. In this :M - }<i +)\+>

problem we shall ignore the bulk contribution as this does sinh X 2\\,

not provide any leading order behavior. This situation is de- = coshw, (41)

picted in Fig. 3. The leading order terms are thus given by
which yields the simple solution,=sinh X (care must be

¥'(ivg) =tand (39) taken in selecting the correct rgoBy using the definition of
which corresponds to the saddle point path and both A, and w we find thg concise solution fqr_ the phase
(i) boundary. This is most easily expressed as a critical value for
enr =, (40)  the weakening parametéras
which corresponds to the relevant pole in the upper half 1
plane(we select thet root as this is the pole that is below b* = K In(cosh X). (42

the lower branch point The transition thus takes place when

these two features cross in the compleplane and we can The calculation for general angle in an isotropic lattice is
therefore determine the phase boundary for this transition bynore involved, though not technically difficult, and here we
equatingr, and v,. This mechanism for a phase transition provide some algebraic guidelines. We find

cosh X cosh X, + v(tarf ¢ — 1)?+ cosif 2K, coslf 2K + (tar? ¢ — 1)(cosHf 2K, + cost 2K))
taf ¢p— 1

coshy(ivg) = - (43

and

w? cosh XK - (w cosh K — cosh K,)(w? - 2w cosh K}/cosh X, + 1)*2
2w cosh X - cosh X,

coshy(iv,) = (44)

which upon equating satisfyingly factorize to give a quadratic equation in the wetting parameter w:
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FIG. 5. A surface plot of the phase boundarydn¢, b param-
eter space. Below the surface the interface will be pinned to the

-50 : . : . * ; * weakened boundary.
02 03 .04 05 06 07 08 09 i
b BT e L (tan¢cosh2(1+ \"1+sinr?2Kltar?¢>
2K, tang+1

FIG. 4. Specific heat curves fé,=10.0, 1.0, 0.1 show that the (46)
GZZ transition is independent &€, coupling strengthsthe small
peaks on the right The bulk properties, however, change drasti- as the phase boundary. We emphasize that this equation rep-
cally, as they should; this is exemplified by the bulk transition peaksesents a surface in the space of three parametessT and
(the big ones on the IgftThe curves are results of Wang-Landau hence there exist many trajectories in parameter space that
Monte Carlo simulations which provide data for continudugor will not exhibit a transition. Additionally, bothy, and v,
details se¢17]. —2i(K,—K5) in the limit T— T, the bulk critical tempera-

ture, giving a consistent solutidithis can be seen in Fig,).3
* It is possible for this system to approach bulk criticality in

W(tarf ¢ — 1) + cosh Ko(2w cosh X} - cosh X,) =0. eithe? phase: this is ngt mandat(?r?/ precursor transitio)i]

(45)  The phase boundary surface defined by &) is depicted
for completeness in Fig. 5.

The reader will note the surprising feature of this expression: IV. ISING COMPUTATION 1I: MAGNETIZATION

it is a quadratic in w/coshK,. As w is only linearly depen- The assertions we have made about the nature of the GZZ
dent on cosh R, this implies the unanticipated result that the phase transition in the preceding section were based on the
phase boundary will be independent of the horizon#gl,  exact analysis of the thermodynamics and some rather intui-
bond couplings. Such a result was also found in a Montaive remarks about their interpretation. We now back these

Carlo study, Fig. 4. Explicitly, by expanding E@5) above, up with a discussion of the spatial dependence of the mag-
we find netization. This is given by

_{(DIR(L,K) (V1 V)N 0% (V1 Vo) Vi (VoV)NR(N, N + K) | @)

Su(r,s) = 47
ulr.9 (DYR(L,K)(V1V2)Wp(VoV)NR(n, n + k) [D) “7
[
at the point(r,s). X (= ag)GT (= a_y)|P_)y X (D_|G(~ a_1)G(- ap)
Since we are interested in largeasymptotics, after first O (NI A )+ of
takingM — o, we will focus on the most significant terms in XR(n,n+K)|p2)e Mol (48)

the spectral decomposition ¥ andVN"S in the numerator,
which are the two-particle ones.
Expressing+) in terms of the|CI>2> gives typically
We use translational invariandthe reason for requiring
cyclic symmetry to move o} to o)l‘:fJ{+f1, for which the

}2 (DPOR(1,K) G (= Bo)G(~ B-y)| D, )e N+ 1] central matrix element is knowi23]. For largen, asymptot-
4 ics will be obtained by taking=0 andj=2. We takeM
c 1 _ — o0, SO that sums can be replaced by Riemann integrals; a
x> = > (D,G(- B)G(- B)VG'(By)---GT(By) little caution is needed here since we shall need the Cauchy
=0 (2))! (B3 principal part. We thus takk— o, which separates the two
2 interface lines by cyclic boundary conditions. Witfs finite,
x| ®,yexp(- ny, wB)) X <(I)+|G(,82j)' . 'G(,Bl)ﬂfnGT we stay near the left hand inclined interface which will mani-
1 fest the GZZ transition. This gives the results
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The exact details of,(z;,2,) are not required; its only
feature of relevance is the presence of a simple pole when
7,2,=1 and the value of the residue at this point. We must
therefore write Eq(49) as a principal part integration, inte-
grating B8 (say first and decompose the resulting integration

X da dg, with reference to the Plemelj formula. Tigeintegration rep-
[1+coss ()]A.(B) resents configurations moving up from the lower boundary,
(49)  Which thus do not yet feel the influence of the grain bound-
ary. Correspondingly the integration will be controlled by the
where saddle path from the boundary to the spin flip, given by
1(™ e—inwe—Ny(a}) N-=-9)v'(iv,) =ir. 51
IN:—f dw ; : (50 ( )Y (ivg) D
m)_p  [1+c086* (w)]A.(w) We find, in the limitN, j, andn large,
|
m* e T e—(N—s)y(ivﬁ+eﬁ)e—(N+s)y(a)f (e|B e—ia)e—i(n—r)aervﬁ—irsﬁ
r,s~m*+|'1—f f — da deg. 52
Zm(r.9) Na2) ) [1+coss* (ivg+ €p)Ipla) *tes (52
[
Note that we have used the notatiptw) defined in the 1 5
text above so that we may write the exponentiated term A"\ X= Zﬁﬂvy: &C
the denominator, making the saddle point interpretation more s
intuitive. The final integration, with respect ® may now 0 0< 5<}
be performed. This integration, now with the presence of the ’ 2’
simple pole in the numerator, can have one of two behaviors, 1
precisely analogous to that appearing in the first section of ={ m*sgn(é), o> —,
this article. The saddle is given by y 2
2[7(¢) + 7 (¢)] 1
(N+9) 7 (iv) =i(n-r). (53) m*sgn(f)erf<|§l[T ;8=
If the saddle v, dominates then Eq(52) becomes a ) (55)

double saddle integration. This is exactly the result found by ) ) o o
previous authorfl2] by making a simple change of variable. @ form almost identical to that abou&“=N"+n<). Note

In terms of a new coordinate systedpmy) defined along and

that in order to make a geometric interpretation of the pinned

normal to the mean geodesic configuration, these authofé€€ energy per unit length,, it is necessary to perform a

find the result is

1 s
m XZELn,ysz
(

0, 0<8< },
2
1
={ m*sgn(é), 8>7,
. A p)+ (P M 1
\m Sgn(g)erf(|§|[T] j 8=,
(54)

which we will comment upon shortly. Note thhtis defined
by L2=(2N+1)?+n?,

short variational calculation; this is presented in the Appen-
dix. We may also probe behavior close to the pinned defect
line. Here we find a different result: the interfaceskgarpin

the thermodynamic limit with

m(x=n/27,y = (N- §)°) =m*sgn(é)
independent ob.

(56)

V. CONCLUSIONS

In this article we have presented in detail the exact Ising
computations pertaining to the geodesic to zigzag transition,
that we have presented elsewhere. The exact calculation re-
veals a previously unreported mechanism for transitions of
this type in the planar Ising model. Mathematically speaking
this is a switch from a saddle dominated integral to a pole

For the pinned configuration, however, we find other re-dominated integral representing the partition function ratio.
sults. First, we examine the behavior around the inclinedJnlike in edge wetting9] the bulk branch points play no
section of interface. In a coordinate system defined analorole. It is interesting to note that the phase boundary is inde-

gously to the one above we find

pendent of one of the Ising couplings;.
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+ 4+ ++ + + + 4+ +++ - -

2n

+ o+ = = = = = = = = = = = FIG. 7. (Color onling A simple picture defining the length

. . o scales used in the text.
FIG. 6. (Color onling A cartoon showing the competing inter-

facial configurations with their respective fluctuation “envelopes.” . . S .
See text for further details. Engineering at the Helsinki University of Technolo@yCE-

HUT) for support. D.B.A. and A.J.W. acknowledge financial
support from the EPSRC under Grants No. GR/M04426 and
No. GR/R83712/01, respectively. V.M. was partially sup-
ported by the Academy of Finland, Research Centre for

omputational Science and Engineering, Project No. 44897
(Finnish Centre of Excellence Program

To further justify this picture we have also presented in
detail the derivation and results of a calculation for a mag
netization using a movable “probe” spin. Such a calculatio
allows us to examine the geometric fluctuation picture in
greater detail and confirm our intuitive picture. We may in-
terpret the results presented above in the following way. In
the geodesic case, as established exactly by Abraham and
Upton, the interface undergoes fluctuations of the order of We may find a geometrical interpretation for the quanti-
the square root of the total length of the interface. Theseies used above by following a simple minimization scheme,
fluctuations therefore diverge with the system size. In thaaking the values for the surface tension as those already
zigzag case we have two distinct fluctuation phenomena ocomputed within the Ising model. This is not, in any way, a
curring in the system at the different interface sections. Theubstitute for an exact calculation, but is an effective way of
inclined interface sections, connecting the boundary to thénterpreting thermodynamics and has been used with great
defect line, also undergo square root fluctuations, but as theuccess for understanding geometrical influence on interfa-
ends are not fixed the point where the interface meets theial configurationg25-27.
grain boundary will fluctuate considerably. The pinned sec- \We begin by defining an energy function with the angular,
tion of interface is markedly different; its fluctuation behav- symmetric inclination of the zigzag, say, as the controlling

ior does not diverge with the system size and its width isparameter. In terms of the notation defined in Fig. 7 we find
strictly finite. In effect, in the pinned phase, the system be-

haves as a geodesic phase which has been sliced in half, £(60) = 27an(0 i+2 -r 0 Al
linked by a horizontal, fluctuation-suppressed, section of in- (6)= 27 )sin 0 moln cos0)] AL

terface(Fig. 6). . . .
An alternative interpretation of the transition is by insteady\/herwAB andrp, are the surface tensions associated with the

considering a critical angle, rather than a critical weakening'ndmed interface section and the defect line surface tension,

Rearranging Eq46) for ¢*, the imposed angle at which the respectively. The formula forag is now well established
transition occurs for givet and T, we find [12] and we quote

APPENDIX: SIMPLE MINIMIZATION SCHEME

1 — eKib Tag(0) = sin 0y[ivy(6)] + v(H)cog 6) (A2)
N e = o oKy 2Keb — 2Ky’ (57) i '
(€2K1P — e2K1)(g2Kib — @72K1) wherevg(6) is defined by
an expression which respects the two known limiis ¥'[ivg6)]=i cot . (A3)

=00 ¢=0,b=10 ¢==/2. We may now write the transition L . )
in terms of this angle and its value relative to the contact W& may thus perform the minimization by simple differ-

angle. Expressed in this way this transition scenario becométiation of Eq.(A1) with respect tof; we find
reminiscent of filling[24,25. Additionally the fluctuation be-

2N
havior of the vertical interface sections in the zigzag phase is f'(0) = 70[70 - vg(6)] (A4)
reminiscent of the interpretation of filling in terms of st
“breather” modes. and therefore at the minima we can associate the defect line
ACKNOWLEDGMENTS tensionmy = v, with a well defined angl®. This association

is required to define the coordinate system for the magneti-
All the authors thank Professor K. Kaski for hospitality in zation calculation and ensures the self-consistency of the
Helsinki. D.B.A. thanks the Laboratory of Computational methods used.
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