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In this article we introduce, develop, and discuss the theoretical calculations required for the exact solution
of a recently reported phase transition, the geodesic to zigzag transition. In this scenario the interfacial tran-
sition emerges from geometric competition between a geodesic, shortest path, configuration and a zigzag
configuration which is able to reduce its energy by binding to a centrally positioned defect line. From a
technical point of view the transition is unusual as it is described by a change from saddle dominated behavior
to pole dominated behavior of the integral representing the partition function ratio. We also establish the
precise fluctuation behavior of the interface by computing the spin magnetization at any point in the system.
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I. INTRODUCTION

Considerable insight into the wetting behavior near sur-
faces in low dimensions has been gained by understanding
the delocalization transitions of interfaces within the two-
dimensional Ising model. This model is a well known statis-
tical mechanical problem that may be solved exactly with
well established techniques of mathematical physicsf1–3g.
Interfacial results may be derived by considering, in mag-
netic language, the behavior of domain walls between the
positive and negative phases. With the lattice gas interpreta-
tion we can then interpret these domain walls as interfaces
separating a gas phase from a fluid phase, or, in terms of
mixtures, with coexisting phases geometrically controlled by
differential surface fugacities. The relevance of geometry for
surface phase transitions is a matter of considerable current
interestf4–7g. As the solutions are exact, they incorporateall
possible fluctuations of the interface. The use of the Ising
model analogy has made it possible to categorize approxima-
tion schemes in a systematic way, permitting greater under-
standing of situations which are beyond the scope of the
Ising solutionf8g.

We may induce controlled interfacial configurations in a
ferromagnetic model by flipping sequences of spins on the
boundaries, thus forming differing regions of positive phase,
negative phase, and the necessary domain walls. Energetic
“traps” for the interface may also be introduced by weaken-
ing the bond strength of a particular line of bonds on the
lattice. If this line runs perpendicular to the transfer direc-
tion, then an exact solution is still possible. A strip geometry,
periodic horizontally, but with hard boundaries top and bot-
tom, may be solved by transferring perpendicular to the
walls. In such a geometry the possible interfacial behaviors
are well understood.

If we position the line of weakened bonds adjacent to the
wall then the well established delocalization or wetting tran-
sition occurs at a well defined temperatureTw,Tc f9g. The
transition mechanism here is produced by the basic energy-
entropy paradigm: the interface will gain energy by follow-

ing the line of defect bonds, but will lose entropy as a result
of the one-sided pinning against an attractive hard boundary.
If, however, the “trap” is positioned centrally, in the thermo-
dynamic limit, then the interface will be captured for all
temperaturesf10g. The differentiation between one-sided and
two-sided pinning was highlighted by Fisher in a mesoscopic
random walk model which indicates the generality of the
scenario by careful analysis of the first return probabilities to
lines f11g. Other work has considered the effect of boundary
conditions that force the interface to cross the strip at a pre-
determined anglef12,13g without the bond weakening. The
results here are nontrivial because the surface tension asso-
ciated with each unit length of interface crossing the lattice is
manifestly angle dependentf12g. By introducing the bond
weakening once more, next to the wall, it is possible to use
the exact solution to define the contact angle in two dimen-
sions in a way that is not invalidated by capillary fluctuations
of the interfacef13,14g.

Here we consider the natural remaining case in this sce-
nario, namely, the behavior of an interface crossing the strip
at an angle when a centrally positioned defect line, running
parallel to the strip axis, is present. This introduces a com-
petitive mechanism between the angled,geodesicinterface
configuration and one that takes azigzag path across the
system in order to profit from the line of weakened bonds.
We have thus called this transition the geodesic to zigzag, or
GZZ, transition. In this article we present the analytic details
of this calculation including the computation of the magne-
tization profiles. Elsewhere we have presented a summary of
these resultsf15g, an approximation methodf16g, and a more
detailed study of the relaxation dynamicsf17g of the system.

II. THE SYSTEM

The system studied is depicted in Fig 1. We construct a
ferromagnetic Ising system with identical hard wall bound-
ary conditionssh= +1d on the top and bottom but which is
periodic along the horizontal axis. The lattice is anisotropic
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with a bond coupling ofK1sK2d between spins in a vertical
shorizontald direction. We choose the vertical distance to be
2N+1 and the system width to beM. We weaken the bonds
in the sN+1dth tier by a factorb; this represents the grain
boundary. The boundary conditions are introduced by flip-
ping a finite numberk of spins in both the top and the bottom
tiers. We introduce the angle by offsetting the flips byn
spins. These boundary conditions, when we take appropriate
limits, induce two—essentially identical—interfaces to form
across the strip. We will demonstrate that the two most likely
configurations are an interface crossing the strip at a mean
anglef or one which is partially pinned to the weakened tier
of bonds in the center of the stripssee Fig. 1d.

It is necessary to form two interfaces in the strip so that
we may impose the periodic boundary conditions; for sim-
plicity, the reader may prefer to visualize a single interface in
a system withantiperiodicboundary conditions. Such a sys-
tem is of course easier to simulate on a computer and is thus
precisely what we have presented elsewhere, but this system
is not feasible to treat analytically with the methods pre-
sented below. The disadvantage of introducing two interfaces
into the system is that alternative, unwanted configurations
may form. It is a feature of our exact treatment that we may
precisely identify and thus eliminate such configurations. We
can thus form simple closed expressions for the relevant in-
terfacial terms.

III. ISING COMPUTATION I: THE PHASE BOUNDARY

The system described above can be solved exactly by
constructing a transfer problem and transferring perpendicu-
lar to the hard boundaries. Denoting a line of spin flips be-
tween spins ati and j as Rsi , jd and the transfer matrices
associated with the vertical and horizontal bonds asV1sK1d
andV2sK2d, respectively, we can write the partition function
associated with a single interface,ZsN,M ;b,fd, in terms of
matrix elements as

ZsN,M ;b,fd2

= lim
k→`

lim
M→`

k+ uRs1,kdsV1V2dNVbsV2V1dNRsn,n + kdu + l
k+ usV1V2dNVbsV2V1dNu + l

s1d

= lim
k→`

lim
M→`

e−2K2
k+ uRs1,kdLRsn,n + kdu + l

k+ uLu + l
s2d

where

L = VNV2
1/2VbV2

1/2VN s3d

and

Vb ; V1sbK1d = exp −o
1

M

sbK1d*s j
z s4d

for 0,b,1 and the limiting process used in Eq.s2d will be
described as we proceed. The relationshipRsi , jdu+l=−sf i

†

+ f idsf j
†+ f jdu+l which is valid whenRsi , jd operates onu+l is

useful in evaluating Eq.s2d if we bring in the identity

u ± l =
1
Î2

suF+
0l ± uF−

0ld s5d

whereuF±
0l are the simultaneous maximal eigenvectors ofV2

snote the strict degeneraciesd and of the parity operator

PM = p
j=1

M

s− s j
zd s6d

with

PMuF±
0l = ± uF±

0l. s7d

Thus the matrix element in the numerator is the sum of the
two terms kF±

0uRs1,kdLRsn,n+kduF±
0l. Since we are inter-

ested in the limitM→`, in which the1 and 2 terms are
asymptotically identical, we will just display one term in the
analysis that follows.

Expanding the local Fermi operatorsf j and their adjoints
in terms of theG0

†svd ,G0s−vd basis, defined by

V2s+ dG0
†svduF+

0l = e−2K2G0
†svduF+

0l s8d

independent ofv, providedeiMv=−1, which also defines the
G0svd which are related to the local fermionsfm, fm

† by

S G0
†svd

G0s− vd
D = S cosu0svd − i sinu0svd

− i sinu0svd cosu0svd
DS F†svd

Fs− vd
D

s9d

with u0svd=sp+vd /2 modp, and

F†svd =
1

ÎM
o
j=1

M

eij vf j
†. s10d

The transformation ins9d, of the Bogolubov-Valatin type
f18g, requires theG0svd to be Fermi operators, as are the
Fsvd themselves. Simple algebra gives

FIG. 1. A simple schematic diagram of the Ising system. We
have shown the various bond couplings associated with the lattice.
The boundary conditions are fixed to be plus on both the top and the
bottom and thus the spin flips between the annotated spins induce a
section of negative spins. Two possible configurations are shown.
The one on the right would be a possible bound configuration along
the center line whereas on the left is a diagonal, geodesic,
configuration.
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kF+
0uRs1,kdLRsn,n + kduF+

0l =
1

M2 o
svd4

exps− iv1dexpf− iv2s1 + kdgexpf− iv3s1 + ndgexpf− iv4s1 + n + kdgexpsio
1

4

u0sv jdd

3 kF+
0ufG0

†sv1d + G0s− v1dgfG0
†sv2d + G0s− v2dgLfG0

†sv3d + G0s− v3dgfG0
†sv4d + G0s− v4dguF+

0l
s11d

The matrix element in Eq.s11d can be evaluated by the
following technique. Let X†svd be defined by the left
vacuum relation

kF+
0uLX†svd = 0 s12d

and thus

S X†svd
Ys− vd

D = L−1S G0
†svd

G0s− vd
DL s13d

where it is useful to introduce the auxiliaryYsvd operators.
The matrix element in Eq.s11d is then

kF+
0uLfX†sv1d + Ys− v1dgfX†sv2d + Ys− v2dg

3fG0
†sv3d + G0s− v3dgfG0

†sv4d + G0s− v4dguF+
0l.

s14d

An element of this form can be computed by a straightfor-
ward extension of standard methods, generalizing Wick’s
theorem to the case of asymmetric in and out states, which is
useful in the present context. Consider the matrix element
defined by

M„svd2m… = kauO1sv1d¯O2msv2mdubl s15d

where the in and out stateskau and ubl have vacuum proper-
ties

kauX†svd = 0 s16d

and

Zs− vdubl = 0, s17d

together with the decomposition

O jsvd = a jsvdX†svd + b jsvdZs− vd. s18d

Note that this may not be possible in all circumstances.
Using the definition s15d then by expandingO1sv1d
using s18d and introducing the anticommutation relations
fZs−v1d ,O jsv jdg+, which arec numbers in this application,
and the vacuum relations give

M„svd2m…

= bsv1do
j=2

2m

s− 1d jfZs− v1d,O jsv jdg+M„D1D jsvd2m…

s19d

wheresvd2m=sv1,… ,v2md andD jsvdI =svdI/ j if j P I for any
index of the setI. Finally, we bring the anticommutator to a
convenient form. Since it is ac number, it follows that

fZs− v1d,O jsv jdg+ =
kaufZs− v1d,O jsv jdg+ubl

kaubl
. s20d

Using the vacuum relationships17d leaves

kauZs− v1d,O jsv jdubl

in the numerator; eliminatingZs−v1d using Eq.s18d and the
vacuum relations16d gives

fZs− v1d,O jsv jdg+ =
kauO1sv1dO jsv jdubl

kaubl
s21d

which is a very useful form for calculating, once the neces-
sary conditions above have been established. As an example
consider

M13 = kF+
0uLfX†sv1d + Ys− v1dgfG0

†sv3d + G0s− v3dguF+
0l

= kF+
0uLYs− v1dG0

†sv3duF+
0l = Csv1d

3kF+
0uLG0

†sv1dG0
†sv3duF+

0l + Dsv1ddv1,v3
kF+

0uLuF+
0l

s22d

where the left and right vacuum operators are related by the
unitary matrix transformation

S X†svd
Ys− vd

D = SAsvd Bsvd
Csvd Dsvd

DS G0
†svd

G0s− vd
D , s23d

where the elements are to be computed in a manner demon-
strated below. But, Eq.s16d also implies

0 = kF+
0uLX†sv1dG0

†sv3duF+
0l

= Asv1dkF+
0uLG0

†sv1dG0
†sv3duF+

0l

+ Bsv1ddv1,−v3
kF+

0uLuF+
0l. s24d

So, providedAsv1dÞ0,

kF+
0uLG0

†sv1dG0
†sv3duF+

0l
kF+

0uLuF+
0l

= −
Bsv1d
Asv1d

dv1,−v3
s25d

and, finally,

M13 = SDsv1d −
Bsv1dCsv1d

Asv1d
Ddv1,−v3

kF+
0uLuF+

0l s26d

which, by the unimodularity of Eq.s23d, simplifies to

M13 =
1

Asv1d
dv1,−v3

s27d

and the other contractions needed in this calculation follow
in an analogous way.
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We now consider the calculation of the transformation
matrix s23d in this particular example. It is useful to note the
group property of the Bogoliubov-Valatin transformation
sBVTd matrices. If

Usud = S cosu − i sinu

− i sinu cosu
D , s28d

thenUsu1+u2d=Usu1dUsu2d and thus we have

V−NS G0
†svd

G0s− vd
DVN = Usu0 − udSeNgsvd 0

0 e−Ngsvd DUsu − u1d

3S G1
†svd

G1s− vd
D s29d

where theG1 are the “diagonal” operators for the grain-
boundary modified matrixVsbd;V2

1/2VbV2
1/2, with angleu1svd

in the BVT. This arrangement makes it easy to see that

L−1S G0
†svd

G0s− vd
DL = Usu0 − udSeNgsvd 0

0 e−Ngsvd DUsu − u1d

3Seg1svd 0

0 e−g1svd DUsu1 − ud

3SeNgsvd 0

0 e−Ngsvd DUsu − u0dS G0
†svd

G0s− vd
D .

s30d

Thus we have a mild exercise with 232 matrices or Pauli
spin algebra according to taste. It is apparent that finiteN
effects are obtained exactly, but, for the purposes of the
present application, we will work to the leading asymptotic
order. Thus Eq.s30d becomes

L−1S G0
†svd

G0s− vd
DL → e2NgsvdZ`svdS G0

†svd
G0s− vd

D s31d

with

Z`svd = fcoshg1 + sinhg1 cossd * − d1
*dg

3
1

2
S1 + cosd * svd − i sind * svd

i sind * svd 1 − cosd * svd
D s32d

where we have introduced the Onsager hyperbolic triangle,
shown in Fig. 2f1g.

The transfer matrixVsbd has angled1
*svd in place ofd*.

The value of this is that we can use the hyperbolic generali-
zations of the al-Kashi triangle formulas as a common ve-
hicle for algebraic simplification in a systematic way.

We are now almost in a position to state the results for the
problem considered. The problem stated is a four-point func-
tion, in the language ofs19d, that may be reduced to a double
sum by use of the generalized Wick’s theorem noted above.
We may extract the relevant terms by first discarding any
n-independent terms, typically corresponding to droplet
states that do not cross the strip, and then discarding any
k-dependent terms which correspond to cross-connected
bubbles, not the single configurations that interest us. In ef-
fect this calculation immediately distinguishes between three

identifiable alternative configurations in the double system;
two bubbles on the respective walls, two interfacessFig. 1d,
and cross-connected interfaces which are less easily visual-
ized. Our selection is merely an expression that we wish to
makek@n implicitly forming a double copy of two other-
wise uncoupled antiperiodic systems. It is important that we
take these limits,M→` thenk→`, in sequence so that the
configurations are identifiable. This thus defines and justifies
the limiting process introduced in Eq.s2d.

The final expression is the product of two identical inte-
grals where the element associated with a single interface is

ZsN,`;b,fd =
1

2p
E

−p

p einv

ANsvd
dv s33d

where the term in the denominator emerges from the se-
quence of transformations above Eq.s30d. With the notation
developed in Eq.s23d we find

A`svd =
e2Ngsvde−2K2s1 + cosd * dsegsvd − l−dsegsvd − l+d

4 sinh 2bK1 sinh 2K1
* sinhgsvd

s34d

in the limit described by Eq.s32d. For finiteN, we may write
ANsvd as a sum of three exponentially different terms,

ANsvd = psvde2Ngsvd − qsvd + rsvde−2Ngsvd, s35d

wherepsvde2Ngsvd;A`svd. The analysis of Eq.s35d and its
consequences for the finite size effects of the phase boundary
of the GZZ transition will appear elsewheref19g; here, how-
ever, we consider Eq.s34d.

The termsl± are roots of a quadratic term and are given
by

l± = w ±Îw2 −
2w cosh 2K1

*

cosh 2K2
+ 1 s36d

where

FIG. 2. Onsager’s hyperbolic triangle. See text for details.
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w = cosh 2K2scosh 2K1
* − sinh 2K1

* cosh 2bK1d, s37d

which is analogous to a similar result for wetting at a wall
f22g. The Onsager functiongsvd f1g is defined by

coshgsvd = cosh 2K1
* cosh 2K2 − sinh 2K2 sinh 2K1

* cosv,

s38d

the necessary features of which are discussed below.
The integrals33d can be evaluated by contour techniques,

and so we must choose an appropriate path within thev
plane. The Onsager functiongsvd is 2p periodic and has
branch cuts in both the lower and upper half planes which
extend from 2isK1−K2

*d to 2isK1+K2
*d and the negative of

this respectively. It has been long established that these cuts
provide information regarding the bulk properties of the
model f20,21g. The factoreinv in Eq. s33d ensures not only
the convergence of the integral, but in the limitn large that
we can associate the leading order behavior of an element
with the feature in the complexv plane that lies closest to
the real line. These features invariably lie on the imaginary
axis to ensure the nonoscillatory behavior of any correlation
lengths.

Examination of Eq.s33d reveals that for this problem we
have three competing terms. The lower branch point from the
Onsager functionscontributing bulk termsd, any zeros of
ANsvd scontributing pinned termsd, and a saddle point com-
ing from the exponentiated termscontributing terms repre-
senting an interface at a constant angled. This last term has
been used in previous calculations to determine the angular
dependent surface tension in the Ising latticef13g. In this
problem we shall ignore the bulk contribution as this does
not provide any leading order behavior. This situation is de-
picted in Fig. 3. The leading order terms are thus given by

g8sin0d = tanf s39d

which corresponds to the saddle point path and

egsin+d = l+ s40d

which corresponds to the relevant pole in the upper half
planeswe select the1 root as this is the pole that is below
the lower branch pointd. The transition thus takes place when
these two features cross in the complexv plane and we can
therefore determine the phase boundary for this transition by
equatingn0 and n+. This mechanism for a phase transition

has not to our knowledge been previously reported.
We can demonstrate the calculation very simply in the

special casef=p /4 on the isotropic latticesK1=K2;Kd.
We find

coshn0 =
1

2
S 1

sinh 2K
+ sinh 2KD

=
cosh2 2K

sinh 2K
−

1

2
S 1

l+
+ l+D

= coshn+ s41d

which yields the simple solutionl+=sinh 2K scare must be
taken in selecting the correct rootd. By using the definition of
both l+ and w we find the concise solution for the phase
boundary. This is most easily expressed as a critical value for
the weakening parameterb as

b * =
1

2K
lnscosh 2Kd. s42d

The calculation for general angle in an isotropic lattice is
more involved, though not technically difficult, and here we
provide some algebraic guidelines. We find

coshgsin0d = −
cosh 2K1

* cosh 2K2 ± Îstan2 f − 1d2 + cosh2 2K2 cosh2 2K1
* + stan2 f − 1dscosh2 2K2 + cosh2 2K1

*d
tan2 f − 1

s43d

and

coshgsin+d =
w2 cosh 2K1

* − sw cosh 2K1
* − cosh 2K2dsw2 − 2w cosh 2K1

* /cosh 2K2 + 1d1/2

2w cosh 2K1
* − cosh 2K2

s44d

which upon equating satisfyingly factorize to give a quadratic equation in the wetting parameter w:

FIG. 3. sColor onlined A plot showing the variation of the fea-
tures in the complex plane as temperature varies. The only part of
the plane that is plotted is the imaginary axis and the inverse tem-
peratureb is shown on the horizontal axis. The lower branch point
sbulk behaviord is shown in black and thus its intercept with the
horizontal axis defines the bulk critical temperature. Below the fea-
ture are plotted the saddle point pathfdark graysbluedg and the pole
flight gray sreddg whose behavior is described in the text. The sys-
tem shown is an isotropic system withf=75°, b=0.6.
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w2stan2 f − 1d + cosh 2K2s2w cosh 2K1
* − cosh 2K2d = 0.

s45d

The reader will note the surprising feature of this expression:
it is a quadratic in w/cosh 2K2. As w is only linearly depen-
dent on cosh 2K2 this implies the unanticipated result that the
phase boundary will be independent of the horizontal,K2,
bond couplings. Such a result was also found in a Monte
Carlo study, Fig. 4. Explicitly, by expanding Eq.s45d above,
we find

b * =
1

2K1
lnS tanf cosh 2K1 + Î1 + sinh2 2K1 tan2 f

tanf + 1
D
s46d

as the phase boundary. We emphasize that this equation rep-
resents a surface in the space of three parametersb, f, T and
hence there exist many trajectories in parameter space that
will not exhibit a transition. Additionally, bothn0 and n+
→2isK1−K2

*d in the limit T→Tc, the bulk critical tempera-
ture, giving a consistent solutionsthis can be seen in Fig. 3d.
It is possible for this system to approach bulk criticality in
either phase: this is not amandatory precursor transition.
The phase boundary surface defined by Eq.s46d is depicted
for completeness in Fig. 5.

IV. ISING COMPUTATION II: MAGNETIZATION

The assertions we have made about the nature of the GZZ
phase transition in the preceding section were based on the
exact analysis of the thermodynamics and some rather intui-
tive remarks about their interpretation. We now back these
up with a discussion of the spatial dependence of the mag-
netization. This is given by

SMsr,sd =
kF+

0uRs1,kdsV1V2dN−ssr
xsV1V2dsVbsV2V1dNRsn,n + kduF0

−l
kF+

0uRs1,kdsV1V2dNVbsV2V1dNRsn,n + kduF+
0l

s47d

at the pointsr ,sd.
Since we are interested in largeN asymptotics, after first

takingM→`, we will focus on the most significant terms in
the spectral decomposition ofVN andVN−s in the numerator,
which are the two-particle ones.

Expressingu+l in terms of theuF±
0l gives typically

1

4o kF+
0uRs1,kdG†s− b0dGs− b−1duF+le−Nfgsb0d+gsb−1dg

3o
j=0

`
1

s2jd! o
sbd2j

kF+uGs− b1dGs− b0dṼG†sb1d¯G†sb2jd

3uF+lexps− no
1

2j

gsbldd 3 kF+uGsb2jd¯Gsb1dsm
x G†

3s− a0dG†s− a−1duF−l 3 kF−uGs− a−1dGs− a0d

3Rsn,n + kduF−
0le−sN−ydfgsa0d+gsa−1dg. s48d

We use translational invariancesthe reason for requiring
cyclic symmetryd to move sr

x to s1
x= f1

†+ f1, for which the
central matrix element is knownf23g. For largen, asymptot-
ics will be obtained by takingj =0 and j =2. We takeM
→`, so that sums can be replaced by Riemann integrals; a
little caution is needed here since we shall need the Cauchy
principal part. We thus takek→`, which separates the two
interface lines by cyclic boundary conditions. Withr ,s finite,
we stay near the left hand inclined interface which will mani-
fest the GZZ transition. This gives the results

FIG. 4. Specific heat curves forK2=10.0, 1.0, 0.1 show that the
GZZ transition is independent ofK2 coupling strengthssthe small
peaks on the rightd. The bulk properties, however, change drasti-
cally, as they should; this is exemplified by the bulk transition peaks
sthe big ones on the leftd. The curves are results of Wang-Landau
Monte Carlo simulations which provide data for continuoust; for
details seef17g.

FIG. 5. A surface plot of the phase boundary inb, f, b param-
eter space. Below the surface the interface will be pinned to the
weakened boundary.
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SMsr,sd

= I N
−1m*

p2E
−p

p E
−p

p

3
e−sN−sdgsbde−sgsadf+seib,e−iade−inaeisr−1/2dsa−bd

f1 + cosd*sadgA`sbd
da db,

s49d

where

IN =
1

p
E

−p

p

dv
e−inve−Ngsvd

f1 + cosd * svdgA`svd
. s50d

The exact details off+sz1,z2d are not required; its only
feature of relevance is the presence of a simple pole when
z1z2=1 and the value of the residue at this point. We must
therefore write Eq.s49d as a principal part integration, inte-
gratingb ssayd first and decompose the resulting integration
with reference to the Plemelj formula. Theb integration rep-
resents configurations moving up from the lower boundary,
which thus do not yet feel the influence of the grain bound-
ary. Correspondingly the integration will be controlled by the
saddle path from the boundary to the spin flip, given by

sN − sdg8sinbd = ir . s51d

We find, in the limitN, j , andn large,

SMsr,sd , m* + IN
−1m*

p2E
−`

` E
−p

p e−sN−sdgsinb+ebde−sN+sdgsadf+seib,e−iade−isn−rdaernb−ireb

f1 + cosd * sinb + ebdgpsad
da deb. s52d

Note that we have used the notationpsvd defined in the
text above so that we may write the exponentiated term in
the denominator, making the saddle point interpretation more
intuitive. The final integration, with respect toa, may now
be performed. This integration, now with the presence of the
simple pole in the numerator, can have one of two behaviors,
precisely analogous to that appearing in the first section of
this article. The saddle is given by

sN + sdg8sinad = isn − rd. s53d

If the saddlena dominates then Eq.s52d becomes a
double saddle integration. This is exactly the result found by
previous authorsf12g by making a simple change of variable.
In terms of a new coordinate systemsx,yd defined along and
normal to the mean geodesic configuration, these authors
find the result is

mSx =
1

2
Lh,y = jLdD

=5
0, 0 , d ,

1

2
,

m* sgnsjd, d .
1

2
,

m* sgnsjderfSujuF2ftsfd + t9sfdg
1 − h2 G1/2D d =

1

2
,

s54d

which we will comment upon shortly. Note thatL is defined
by L2=s2N+1d2+n2.

For the pinned configuration, however, we find other re-
sults. First, we examine the behavior around the inclined
section of interface. In a coordinate system defined analo-
gously to the one above we find

mSx =
1

4
Lh,y = jLdD

=5
0, 0 , d ,

1

2
,

m* sgnsjd, d .
1

2
,

m* sgnsjderfSujuF2ftsfd + t9sfdg
1 − h

G1/2D , d =
1

2
,

s55d

a form almost identical to that abovesL2;N2+n2d. Note
that in order to make a geometric interpretation of the pinned
free energy per unit length,n+, it is necessary to perform a
short variational calculation; this is presented in the Appen-
dix. We may also probe behavior close to the pinned defect
line. Here we find a different result: the interface issharp in
the thermodynamic limit with

m„x = n/2h,y = sN − jdd
… = m* sgnsjd s56d

independent ofd.

V. CONCLUSIONS

In this article we have presented in detail the exact Ising
computations pertaining to the geodesic to zigzag transition,
that we have presented elsewhere. The exact calculation re-
veals a previously unreported mechanism for transitions of
this type in the planar Ising model. Mathematically speaking
this is a switch from a saddle dominated integral to a pole
dominated integral representing the partition function ratio.
Unlike in edge wettingf9g the bulk branch points play no
role. It is interesting to note that the phase boundary is inde-
pendent of one of the Ising couplings,K2.
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To further justify this picture we have also presented in
detail the derivation and results of a calculation for a mag-
netization using a movable “probe” spin. Such a calculation
allows us to examine the geometric fluctuation picture in
greater detail and confirm our intuitive picture. We may in-
terpret the results presented above in the following way. In
the geodesic case, as established exactly by Abraham and
Upton, the interface undergoes fluctuations of the order of
the square root of the total length of the interface. These
fluctuations therefore diverge with the system size. In the
zigzag case we have two distinct fluctuation phenomena oc-
curring in the system at the different interface sections. The
inclined interface sections, connecting the boundary to the
defect line, also undergo square root fluctuations, but as the
ends are not fixed the point where the interface meets the
grain boundary will fluctuate considerably. The pinned sec-
tion of interface is markedly different; its fluctuation behav-
ior does not diverge with the system size and its width is
strictly finite. In effect, in the pinned phase, the system be-
haves as a geodesic phase which has been sliced in half,
linked by a horizontal, fluctuation-suppressed, section of in-
terfacesFig. 6d.

An alternative interpretation of the transition is by instead
considering a critical angle, rather than a critical weakening.
Rearranging Eq.s46d for f*, the imposed angle at which the
transition occurs for givenb andT, we find

tanf * =
1 − e4K1b

se2K1b − e2K1dse2K1b − e−2K1d
, s57d

an expression which respects the two known limitsb
=0⇒f=0, b=1⇒f=p /2. We may now write the transition
in terms of this angle and its value relative to the contact
angle. Expressed in this way this transition scenario becomes
reminiscent of fillingf24,25g. Additionally the fluctuation be-
havior of the vertical interface sections in the zigzag phase is
reminiscent of the interpretation of filling in terms of
“breather” modes.
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APPENDIX: SIMPLE MINIMIZATION SCHEME

We may find a geometrical interpretation for the quanti-
ties used above by following a simple minimization scheme,
taking the values for the surface tension as those already
computed within the Ising model. This is not, in any way, a
substitute for an exact calculation, but is an effective way of
interpreting thermodynamics and has been used with great
success for understanding geometrical influence on interfa-
cial configurationsf25–27g.

We begin by defining an energy function with the angular,
symmetric inclination of the zigzag,u say, as the controlling
parameter. In terms of the notation defined in Fig. 7 we find

fsud = 2tABsud
N

sinu
+ 2tDfn − L cossudg sA1d

wheretAB andtD are the surface tensions associated with the
inclined interface section and the defect line surface tension,
respectively. The formula fortAB is now well established
f12g and we quote

tABsud = sinugfinssudg + nssudcossud sA2d

wherenssud is defined by

g8finssudg = i cotu. sA3d

We may thus perform the minimization by simple differ-
entiation of Eq.sA1d with respect tou; we find

f8sud =
2N

sin2 u
ftD − nssudg sA4d

and therefore at the minima we can associate the defect line
tensiontD;n+ with a well defined angleu. This association
is required to define the coordinate system for the magneti-
zation calculation and ensures the self-consistency of the
methods used.

FIG. 6. sColor onlined A cartoon showing the competing inter-
facial configurations with their respective fluctuation “envelopes.”
See text for further details.

FIG. 7. sColor onlined A simple picture defining the length
scales used in the text.
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